

Increasing production efficiency through improved feed management

Kostas Stamatopoulos *Global Speciality Solutions Manager – Enzymes, DSM Animal Nutrition* & Health

Agenda

- Enzymes Action & Benefits
- Feed cost reduction
- Alternative RMs & maximizing utilization by layers
- Environmental impact

International Egg Commission

ECHNCAL SEMNAR INDIA Profitable Egg Production

- Layer efficiency improvement
- Waste reduction

for increasing both productivity & profitability within layer business.

Feed enzymes

Enzyme	Substrate	Final products		
Phytase	Phytate	Phosphorus & MYO-inositol		
Xylanase	Arabinoxylan	Xylan Oligomers		
β-glucanase	β-glucans	Glucan Oligomers		
Cellulase	Cellulose	Cellulose Oligomers		
Xyloglucanase	Xyloglucans	Xyloglucan Oligomers		
Pectinases	Pectins	Pectic Oligomers		
Amylase	Starch	Maltose & Glucose		
Protease	Undigestible protein	Peptides		

Why do we need feed enzymes ? - The substrate

Cell membrane

Layers do not have Phytases and NSPenzymes to hydrolyze Phytate and NSPs respectively.

Transmission electron microscopy

Feed Waste Reduction (or better feed utilisation)

			- AND TROUMAL AND INTO THE OWNER	TRADUCTION INCOMENDATION OF THE PROPERTY OF TH
FEED	DIGESTION	NUTRIENT ABSORPTION	WASTE	PROFITABILITY
Without enzymes	Average	Average	Average	Average
With feed enzymes	enzymes Better Better		Minimum	Better
Some factors affecting		Feed En	zymes coulo	d affect
 Feed outilization: Feed quality Gizzard function Gut Health & Integrity Hese factors via : Feed digestibility improvement Coarsely ground feed is welcom Better protein utilization, visco reduction prebiotic NSP-oligon 				

Feed Enzyme Benefits

Feed cost reduction with feed enzymes

- Indian layer Diet formulated with Hy-Line, Phase-1 nutrient specs.
- It contains ~12% "alternative" & local RMs.
- MBM is also considered as "alternative" RM, for which its quality needs attention.
- "Other Additives" are Vitamins, Minerals, Tryptophan, Salt, Toxin Binder, Choline, Soda.
- Multi NSP enzyme contains xylanase, de-branching activities, xyloglucanase, cellulase, B-glucanase.

		No
Raw Material	Rs/Kg	Enzymes
Broken Rice	13	200.00
Maize	17	433.90
Soyabean Meal	70	119.44
Rice Bran De-oiled	12	2.68
Rice DDGS	45	15.00
Rapeseed Meal	29	30.00
Groundnut Meal	50	30.00
Sunflower Meal	30	25.00
Meat & Bone Meal-LP	65	20.00
Shell Grit	2	100.67
DCP	36	11.28
DL-Methionine	270	1.84
Lysine-HCl	200	1.65
Threonine	209	0.45
Other Additives	78	8.08
Phytase (standard dose)	620	
Protease	1,650	
Multi NSP enzyme	1,150	
Total		1,000

Nutrient	Unit	
C Protein	%	16.0
C Fiber	%	3.3
C Fat	%	2.5
ME	Kcal/Kg	2,700
Calcium	%	4.30
Av Phosphorus	%	0.38
Sodium	%	0.17
Chloride	%	0.23
Dig Lysine	%	0.72
Dig Methionine	%	0.42
Dig M + C	%	0.64
Dig Arginine	%	1.00
Dig Tryptophan	%	0.16
Dig Threonine	%	0.50
Dig Valine	%	0.65
Dig Leucine	%	1.13
Dig IsoLeucine	%	0.53

Feed cost reduction with phytase

- The first diet was optimized with Av.P, Ca & Na contribution from a standard phytase dose.
- The second diet was optimized with Av.P, Ca, Na matrix, together with 50% of the recommended matrix for CP, AA & Energy (standard phytase dose).
- Alternative RMs = ~ 17%
- Desktop enzyme ROI = from 1:13 to 1:26
- Conditions for achieving these substantial diet cost savings:
 - Good phytase (at least 3G stability)
 - Sufficient substrate (phytate-P)

		No	Phytase with	Phytase with	
Raw Material	Rs/Kg	Enzymes	Av.P/Ca/Na	full matrix	
Broken Rice	13	200.00	200.00	200.00	
Maize	17	433.90	428.27	406.18	4
Soyabean Meal	70	119.44	115.00	110.00	
Rice Bran De-oiled	12	2.68	20.71	48.46	
Rice DDGS	45	15.00	15.00	15.00	
Rapeseed Meal	29	30.00	30.00	30.00	
Groundnut Meal	50	30.00	30.00	30.00	
Sunflower Meal	30	25.00	25.00	25.00	
Meat & Bone Meal-LP	65	20.00	20.00	20.00	
Shell Grit	2	100.67	101.30	101.45	
DCP		11.28	2.77	2.47	
DL-Methionine	270	1.84	1.83	1.69	
Lysine-HCl	200	1.65	1.68	1.52	
Threonine	209	0.45	0.45	0.27	
Other Additives	78	8.08	7.93	7.90	
Phytase (standard dose)	620		0.06	0.06	
Protease	1,650				
Multi NSP enzyme	1,150				
Total		1,000	1,000	1,000	For a 10,000
	Rs/MT	25,624	25,156	24,644	layer flock,
COST SAVINGS			(468)	(981)	358,000 Rs o
	\$/MT		(6.2)	(13.1)	\$4,800 p.a.

Feed cost reduction with phytase & protease

- Protease diet was optimized with a specific AA/ME matrix.
- Phytase effect on AA was already discounted by 50%.
- Alternative RMs = ~ 19%
- Desktop enzyme ROI = 1:7.
- Additional protease benefits:
 - Gut health more clean eggs
 - Trypsin Inhibitors' degradation
 - Flexibility on diet optimization
 - Feed protein variability reduction
 - Less Nitrogen emissions

		No	Phytase with	Phytase with	Phytase &	
Raw Material	Rs/Kg	Enzymes	Av.P/Ca/Na	full matrix	Protease	
Broken Rice	13	200.00	200.00	200.00	200.00	
Maize	17	433.90	428.27	406.18	396.75	
Soyabean Meal	70	119.44	115.00	110.00	100.00	
Rice Bran De-oiled	12	2.68	20.71	48.46	68.35	
Rice DDGS	45	15.00	15.00	15.00	15.00	
Rapeseed Meal	29	30.00	30.00	30.00	30.00	
Groundnut Meal	50	30.00	30.00	30.00	30.00	
Sunflower Meal	30	25.00	25.00	25.00	25.00	
Meat & Bone Meal-LP	65	20.00	20.00	20.00	20.00	
Shell Grit	2	100.67	101.30	101.45	101.59	
DCP	36	11.28	2.77	2.47	2.31	
DL-Methionine	270	1.84	1.83	1.69	1.40	
Lysine-HCl	200	1.65	1.68	1.52	1.42	
Threonine	209	0.45	0.45	0.27	0.09	
Other Additives	78	8.08	7.93	7.90	7.89	
Phytase (standard dose)	620		0.06	0.06	0.06	For a
Protease	1,650				0.15	laver
Multi NSP enzyme	1,150					flock,
Total		1,000	1,000	1,000	1,000	546,000
SUBSTANITIAL DIET	Rs/MT	25,624	25,156	24,644	24,127	Rs or
COST SAVINGS			(468)	(981)	(1,497)	\$7,300
	\$/MT		(6.2)	(13.1)	(20.0)	p.a.

Feed cost reduction with phytase & NSP multi-enzyme

 The Multi-NSP-enzyme diet was optimized with a calculated ME contribution of 60 kcal/Kg.

- Together with the Phytase ME effect, the enzymes were contributed a total of **102 <u>kcal/Kg.</u>** Enzyme energy contribution was managed by the addition of Rice Bran.
- Alternative RMs = $\sim 20\%$
- Desktop enzyme ROI = 1:9. •
- Additional benefits: •
 - Lower Starch diets are less thermogenic, which is good for birds under Heat Stress.
 - Gut health from viscosity reduction & prebiotic effects of NSP-oligomers.
 - Feed energy variability reduction.
 - Flexibility on diet optimization.

			No	Phytase with	Phytase with	Phytase &
ION	Raw Material	Rs/Kg	Enzymes	Av.P/Ca/Na	full matrix	NSP-enzyme
nzyme	Broken Rice	13	200.00	200.00	200.00	200.00
7	Maize	17	433.90	428.27	406.18	371.97
otimized with	Soyabean Meal	70	119.44	115.00	110.00	110.00
) kcal/Kg.	Rice Bran De-oiled	12	2.68	20.71	48.46	83.14
at the	Rice DDGS	45	15.00	15.00	15.00	15.00
ect, the	Rapeseed Meal	29	30.00	30.00	30.00	30.00
01 <u>102</u>	Groundnut Meal	50	30.00	30.00	30.00	30.00
	Sunflower Meal	30	25.00	25.00	25.00	25.00
	Meat & Bone Meal-LP	65	20.00	20.00	20.00	20.00
For a 10,000	Shell Grit	2	100.67	101.30	101.45	101.63
layer flock, 410,000 Rs or \$ 5,500 p.a.	DCP	36	11.28	2.77	2.47	2.04
	DL-Methionine	270	1.84	1.83	1.69	1.65
	Lysine-HCl	200	1.65	1.68	1.52	1.37
ogonia	Threonine	209	0.45	0.45	0.27	0.21
ogenic,	Other Additives	78	8.08	7.93	7.90	7.86
it Stress.	Phytase (standard dose)	620		0.06	0.06	0.06
an Q	Protease	1,650				
	Multi NSP enzyme	1,150				0.08
S.	Total		1,000	1,000	1,000	1,000
	SUBSTANTIAL DIFT	Rs/MT	25,624	25,156	24,644	24,500
•	COST SAVINGS			(468)	(981)	(1,125)
		\$/MT		(6.2)	(13.1)	(15.0)

Feed Enzyme Benefits

Which Feed Raw Materials are considered as "Alternative" for layer feed? ...question with different answers...

Europe-Australia-Canada

- Wheat
- Barley
- Corn
- SBM
- Oats
- Triticale
- Rye
- Lupins-Peas-Faba Beans
- Cereal By-products
- Canola / Rapeseed Meal
- Sunflower Meal

USA - Latin America - Asia

- Corn
- SBM
- Wheat-Barley
- Sorghum-Millet
- Lupins-Peas-Faba Beans
- Cereal By-products
- Canola / Rapeseed Meal
- Sunflower Meal
- Cottonseed Meal
- Groundnut meal
- Palm Kernel Meal
- Sesame Meal

Mexico

- Sorghum
- Corn
- SBM
- Wheat
- Cereal By-products
- Canola Meal
- Sunflower Meal
- Palm Kernel Meal
- Cottonseed Meal
- Groundnut Meal

Characteristics of Alternative Raw Materials

Today we will focus on :

- Locally produced
- Lower price
- Low inclusion rate
- Variable quality
- Inconsistent availability
- Anti-Nutritional factors

- Wheat
- Pearl Millet
- Corn DDGS
- Rice Bran
- Canola / Rapeseed Meal
- Sunflower Meal
- Palm Kernel Meal

Cereals & by-products

(from mono-cotyledonous plants)

Non-Starch Polysaccharides in cereals and their byproducts:

- Cellulose
- Hemicelluloses
 - β -glucans
 - Xylans (Arabinoxylans)
 - Xyloglucans

Wheat

- Each endosperm cell is surrounded by a cell-wall unique for wheat, consisting of 70% arabinoxylans
- Wheat contains both soluble and insoluble arabinoxylan in the endosperm cells
- Starch is stored as granules in starchy endosperm cells
- If both entrapped nutrients are released and gut viscosity is reduced, this will maximize the energy value of wheat-based diets

CAROTENOID

SUPLEMENTATION

Wheat - Xylanase effect

- New Zealand trial, Massey University, 2015
- HyLine brown-egg, 26 wks of age
- Wheat-based diet (~55%)
- T1 Control, T2 T1+Xylanase

Pearl Millet (Bajra)

- In Pearl Millet, the endosperm cell-walls consist mainly of highly substituted arabinoxylans and cellulose.
- To successfully breakdown the cell-walls of Pearl Millet, a combination of xylanase, de-branching activities (e.g. arabinofuranosidase) & cellulase is needed, in order to **release the trapped energy** and reduce the intestinal viscosity.
- Pearl Millet based layer diets performed the same as corn-based diets. Both diets were supplemented with Soya Oil. *Muramatsu et al.*, 2005.
- Whole (unground) Pearl Millet can replace corn up to 15%, in a layer corn-SBM based diet. *Garcia et al.*, 2006.

Corn DDGS

Arabinoxylan needs de-branching enzymes & xylanases for solubilization

- Arabinoxylan debranching activities (arabinofuranosidase) are needed.
- If only a xylanase is available, it is difficult to work on a such highly substituted arabinoxylan structure.

Corn DDGS - Protease effect

%

- USA trial
- HyLine W36 white layers,
- 56 wks of age

Source: Angel, R. et al. "Effects of a mono-component protease on true ileal amino acid digestibility of selected ingredients for commercial laying hens." Abstract 508 - Poster - PSA 2011

Rice Bran (& rice polish)

A great and low-cost source of :

➢ Protein

Energy (full-fat rice-bran)Phosphorus

Rice Bran

Xylanase alone, is not sufficient to "unlock" the nutrients from rice brans.

novozymes

Incubation with XYLOGLUCANASE containing feed enzyme

Xyloglucan (red signal) in 2 areas of sample. Other cell components visualised as yellow green

Oil Seeds & Tubers (from di-cotyledonous plants)

Non-Starch Polysaccharides in oil seeds, tubers and their by-products:

- Cellulose
- Hemicelluloses
 - Xyloglucans
- Pectins
 - Mannans (Galactomannans
 - Galactans (Arabinogalactans)
 - Arabinans
 - Homogalacturonan
 - Rhamnogalacturonans
 - Xylogalacturonan

Canola Meal or Rapeseed Meal (RSM) or Mustard De-Oiled Cake

- Solvent extracted rapeseed meal (RSM) could safely be included <u>up to 15%</u>, replacing part of soybean meal in maize or maize & pearl-millet based broiler chicken diets. (*Tyagi et al., 2004*, *Jayanti et al., 2006*)
- '00'RSM (canola meal) having total glucosinolate content of 32.1 µmol/g, can be included up to 30% in the broiler finisher diet. Supplementation of enzyme mixture containing xylanase, pectinase and cellulase can improve performance.

(*Ramesh et al.*, 2006)

Canola Meal (CM) - Protease effect on AID of AA

CM + Protease

Source: Gomez et al., 2011

Sunflower Meal A good protein source, high in fiber

- Low in lysine
- High in insoluble fiber
- Bulky raw material, issue for mash feeds
- In pelleted feed the bulky factor is not an issue, higher inclusions
- Promotes gizzard function
- 13-20 % of protein is not digestible (protease)

Palm Kernel Meal Only for ruminants ?

- Good quantities are available in South-East Asia (Malaysia – Indonesia).
- A low-cost alternative protein source.
- High in lignin (10-18%), which is reducing feed intake.
- Sometimes is causing wet droppings, if the right enzymes are not used.
- It could be used up to 15% in layer diets.
- It contains 62-66% NSP:
 - 50% mannans
 - 11% cellulose
 - 3% arabinoxylan

Red Mannan signal in cell-walls.

Mannanase containing enzyme removed the red Mannan signal.

Feed Enzyme Benefits

Reducing our reliance on soybean in feed

Low protein diets

Advanced and readily available technology

Other feed enzymes

Other sources of protein and non-edible materials

More digestibility with feed enzymes

Sunflower Meal

- Greater adoption of feed additive technology is key in reducing the layers industry footprint for feed efficiency, reducing waste, and reducing reliance on soybean.
- If the entire layer industry will apply *feed enzyme* technology to its 149million MT layer feed, Green House Gas emission reduction is estimated at 12.4 million tons (CO_2e), amount equivalent to:

5.2 million cars driven in one year

Impact: 12million ton CO2 reduction = ~ 7% of layer industry emission

Conclusion

- Feed enzymes could contribute to more profitable and sustainable layer farming
- They are improving nutrient utilization, reducing nutrients which are escaping digestion
- Right selection of enzyme activities could "unlock" the potential of many alternative local raw materials
- Enzymes are also offering some strong side benefits related to bird performance, health & welfare.

International Egg Commission

TECHNICAL SEMINAR INDIA

Any Questions?