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including data analysis, interpretation of antigenic and genetic findings, and context-specific recommendations. This support
is particularly valuable where vaccination is being considered or implemented. In such cases, testing representative local
isolates against multiple within-clade antisera is recommended to detect antigenic drift which might impact vaccine match. In
settings where viruses are enzootic in poultry or where multiple clades or subclades co-circulate, vaccine challenge studies
using local strains are advised to evaluate vaccine effectiveness. Reagents (such as antisera and inactivated viruses) produced
under the OFFLU AIM framework by APHA and 1ZSVe can also be shared, upon request, with selected WOAH and FAO
reference laboratories. This enables generation of comparative antigenic data using standardized reagents and protocols under
a defined quality framework. However, appropriate inter-laboratory standardization and interpretation are essential before data
from additional sources can be reliably integrated into analyses. For further information or technical dialogue, please contact:

secretariat@offlu.org.

Disclaimers

This report provides the point of view of independent OFFLU experts and does not necessarily reflect the position of the parent
organisations FAO and WOAH. Additionally, there has been a recent update to the H5 nomenclature by the WHO/FAO/WOAH
H5 Nomenclature Working Group to reflect the genetic diversification of the A(H5) viruses, particularly clade 2.3.2.1¢, to add

2.3.2.1d, e, f, and g (Ort et al., 2025). Where relevant, updated clade homenclatures have been adopted in this report.
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2. Executive Summary

OFFLU has established a system to guide countries in how well their vaccine seed strains are antigenically matched to
contemporary H5Nx Goose/Guangdong/1/96 (Gs/Gd) lineage high pathogenicity avian influenza viruses (HPAIVs). Reference
antisera are raised in chickens using either clade-representative field isolates or isolates that genetically mirror existing vaccine
seed strains (surrogate vaccine seed strains). Contemporary field viruses are then tested against these antisera with
haemagglutination-inhibition (HI) assays, and the resulting titres are analysed and visualised through antigenic cartography to
quantify the distance between current viral antigens and those used to generate the reference antisera. Larger antigenic
distances indicate antigenic drift, which means the ability of antibodies to neutralise strains may be reduced, that in turn may
compromise vaccine efficacy. This may necessitate updating vaccine seed strains. Background and methods appear in

Module 1 (Background Report)' and Module 2 (Guidance Report)?, while this document contains the technical findings.

As of July 2025, clade 2.3.4.4b H5N1 viruses account for most poultry outbreaks globally, but H5Nx viruses from clades such
as 2.3.4.4h, 2.3.2.1a, 2.3.2.1¢, and 2.3.2.1g continue to widely circulate in parts of South and Southeast Asia. To capture their
combined impact, this OFFLU AlIM assessment applies HI testing and antigenic cartography to quantify and visualise antigenic
relationships between field isolates from these clades and within-clade vaccine seed strains. For these analyses, the post-
infection chicken antisera panel was expanded to include three representatives from previously untested clades and two
additional clade 2.3.4.4b viruses selected to better reflect contemporary H5 diversity in Africa. The test virus dataset comprises
new HI data from 85 H5N1 viruses representing clades 2.3.2.1a, 2.3.2.1¢, 2.3.2.1¢, 2.3.4.4b, 2.3.4.4¢, and 2.3.4.4h, covering
with multiple neuraminidase subtypes (N1, N2, N5, N8, and others). These viruses were collected between 2016 and 2025
from Europe, North America, South and Southeast Asia, East Asia, and Antarctica, with testing conducted by international
reference laboratories at APHA (United Kingdom), IZSVe (ltaly), and ACDP (Australia).

Analyses conducted during this period indicate that the most recent H5 viruses from clade 2.3.4.4b, collected in 2024 and
2025, are expected to be suitable candidate antigens for inactivated whole virus adjuvanted vaccines targeting these strains,
although some subtype-specific heterogeneity was observed, consistent with previous reports. In contrast, vaccine antigens
from outside clade 2.3.4.4, including contemporary 2.3.2.1a viruses and earlier ancestral clades such as clades 1, 2.2.1, and
2.3.4 showed limited antigenic cross-reactivity and are unlikely to offer effective protection against currently circulating clade
2.3.4.4b viruses. Notably, H5N1 viruses from clade 2.3.2.1a, particularly those detected in South Asia in 2024, exhibited
reduced reactivity to both clade 2.3.4.4 and 2.3.2.1 antisera, continuing a trend of increasing antigenic divergence observed
since 2021. This data demonstrates that continued monitoring of genetic and antigenic changes, particularly in countries where
the virus remains enzootic in poultry, as well as regions that periodically become free of circulation but are at risk of re-
introduction from nearby endemic areas, is essential for the early detection of antigenic drift and the timely updating of vaccine

compositions.

! https://www.offlu.org/index.php/offlu-avian-influenza-matching-offlu-aim-introduction-and-background/
2 https://www.offlu.org/index.php/offlu-avian-influenza-matching-offlu-aim-guide-to-assessing-antigenic-characteristics-of-avian-influenza-viruses-june-2024/
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3. Background

Since 2020, H5Nx A/Goose/Guangdong/1996 (Gs/Gd) lineage high pathogenicity avian influenza viruses (HPAIVs) have shifted
from being a seasonal threat to poultry populations to a persistent global threat to both poultry production and wild bird
populations (EFSA, 2025). Wild bird migration has facilitated their spread to most regions, triggering unprecedented outbreaks
in domestic poultry and causing large-scale mortality events in wild birds. These events have had substantial financial impacts
on poultry production and adversely affected avian biodiversity, including several species of conservation concern. In areas
experiencing high environmental viral pressure due to large-scale bird mortality caused by HPAIV, the virus has also spilled over
sporadically into terrestrial and aquatic mammalian species causing mass die-off events. The primary clade driving current
global outbreaks is 2.3.4.4b H5NX, but viruses from clades 2.3.2.1a, 2.3.2.1¢, 2.3.2.1g, and 2.3.4.4h continue to circulate in
countries in Asia (Figure 1). In response, global calls for the use of vaccination have spurred a series of initiatives highlighting

the importance of monitoring haemagglutinin (HA) evolution to inform optimal vaccine strain selection.

Clade 2.3.4.4b

All other clades

i . 2_3.2:19

\ / . 2.3.4.4h
. /

\ /

Figure 1. Global distribution of H5 clades according to the updated nomenclature between September 2022-February 2025, based on
information from WHO reports on ‘Genetic and antigenic characteristics of zoonotic influenza A viruses and development of candidate vaccine
viruses for pandemic preparedness’ from February 2023-February 2025. Geographic locations of detections are shown based on publicly
available sequence data and information.

One key component of effective vaccination is maintaining close antigenic relatedness between circulating viruses and vaccine
strains, which can significantly reduce the impact of infection in vaccinated flocks. Vaccination has been used in some countries
for many years, and in light of the current situation, many more countries are now considering or implementing vaccination

against Gs/Gd-lineage viruses. Vaccination is supported and actively recommended in certain contexts to control HPAI (see
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FAO/WOAH Global strategy for the prevention and control of high pathogenicity avian influenza (2024-2033))3. However,

the continued evolution of HPAIVsS poses a persistent risk of antigenic drift and escape from antibody-mediated neutralisation
(Wang et al., 2025), underscoring the need for ongoing surveillance and timely phenotypic characterisation to inform vaccine

effectiveness.

The OFFLU Avian Influenza Matching (AIM) project is a collaborative initiative led by the Animal and Plant Health Agency
(United Kingdom) with support from partners in Italy (IZSVe), the USA (USDA Southeast Poultry Research Laboratory), and
Australia (CSIRO ACDP). Its primary goal is to generate and regularly update a standardised panel of chicken sera and
homologous antigens, serving as an FAO-WOAH international standard for the antigenic characterisation of circulating avian
influenza viruses to monitor viral evolution. The group operates reactively, continuously monitoring emerging strains and
obtaining relevant isolates through global partnerships to ensure antigenic relevance. Antigenic diversity is assessed using
standardised HI testing (see protocols here), with results visualised through antigenic cartography to support vaccine strain

evaluation in a constantly evolving landscape.

The aims of the overall and ongoing project are to:
l. Generate a continually updated panel of reagents (antisera and inactivated viruses), produced by APHA and 1ZSVe

using local and internationally requested avian influenza viruses (AlVs).

Il. Evaluate these reagents at APHA and IZSVe, alongside emerging viral strains, to generate preliminary
haemagglutination inhibition (HI) data using standardised HI assays.

. Collaborate with other WOAH and FAQ international reference laboratories in strategically selected locations by sharing
protocols and reagents to broaden antigenic assessment coverage.

V. Produce quality assured comparative Hl data across laboratories and merge these into antigenic distance data to
assess the antigenic characteristics of contemporary viruses as they emerge globally.

V. Standardise laboratory procedures by sharing protocols and generating harmonised reagents and methodologies

within defined quality frameworks, enabling global multi-centre comparisons.

In addition to establishing harmonised methods across designated laboratories, antigenic data generated through AIM
complements data from FAO and WOAH member countries, OFFLU partners, and regional surveillance networks. This includes
epidemiological data, evidence of vaccine breakthrough, and experimental studies. Together, these data could help to inform
need to update vaccine antigens and may support alignment among vaccine manufacturers undertaking similar analyses. By
identifying areas of increasing antigenic diversity, this work helps position responses to existing vaccines (Table 1) within
antigenic maps of HA glycoprotein variation. While AIM does not directly assess vaccine efficacy, the combined data provide a
robust basis for conducting challenge studies in vaccinated birds to assess protection, updating poultry vaccine antigens, and

refining vaccination strategies.

® https://openknowledge.fao.org/items/4c4f67c1-c8c7-401b-9d04-720493406¢c19
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3.1. Vaccine Seed Strains

Table 1. Seed strains of H5 vaccines which are either currently understood to be in use or used previously. Where available clade
information and references have been included. An asterisk (*) indicates instances where the clade nomenclature may differ from the latest
designation of the WHO/FAO/WOAH H5 Nomenclature Working Group.

Seed Strain / HA Gene Source Clade Reference Represented in AIM
A/duck/Potsdam/1402/86 non-Gs/Gd DEFRA Vaccination Taskforce* No
A/Goose/Guangdong/96 0 (Shi et al., 2023) No
A/chicken/Vietnam/C58/04 ] (EFSA Panel on Animal Health and Animal Welfare (AHAW) Yes
etal., 2023)
ANietnarm/1194/5004 1 (EFSA Panel on Animal Health and Animal Welfare (AHAW) Yes
etal., 2023)
Alchicken/Legok/2003 211 (EFSA Panel on Animal Health and Animal Welfare (AHAW) Pending
etal., 2023)
A/Swan/Hungary/4999/2006 2.2 DEFRA Vaccination Taskforce Yes
EFSA Panel on Animal Health and Animal Welfare (AHA
A/CK/Egypt/ME1010/2016 2211 ( anel on Animal Health and Animal Welfare (AHAW) Pending
etal., 2023)
A/Chicken/Egypt/Q1995D/2010 0015 (EFSA Panel on Animal Health and Animal Welfare (AHAW) No
etal., 2023)
EFSA Panel on Animal Health and Animal Welfare (AHA
A/Chicken/Egypt/RG-173 CAL/2017 2212 ( anel on Animal Health and Animal Welfare (AHAW) Pending
etal., 2023)
A/DUCK/EGYPT/M2583D/2010 0015 (EFSA Panel on Animal Health and Animal Welfare (AHAW) Yes
etal., 2023)
EFSA Panel on Animal Health and Animal Welfare (AHA
A/chicken/West-Java/Pwt-Wij/2006 2312 ( anel on Animal Health and Animal Welfare (AHAW) No
etal., 2023)
A/duck/China/E319-2/2003 232 DEFRA Vaccination Taskforce No
A/duck/Anhui/SI246/2014 2.3.2.1 (Shi et al., 2023) No
A/Hubei/A/2010 23914 (EFSA Panel on Animal Health and Animal Welfare (AHAW) Yes
etal., 2023)
A/duck/Guangdong/S1322/2010 2.3.2.1b (Shi et al., 2023) Yes
EFSA Panel on Animal Health and Animal Welfare (AHA
A/chicken/Tanggamus/031711076-65/2017 2.3.2.1c* ( anel on Animal Health and Animal Welfare ( W) No
etal., 2023)
A/chicken/Liaoning/SD007/2017 2.3.2.1d (Shi et al., 2023) Pending
rgCA2/2.3.2.1d 2.3.2.1d (Kang et al., 2022) No
A/chicken/Vietnam/NCVD-KA435/13 239 16" (EFSA Panel on Animal Health and Animal Welfare (AHAW) Pending
etal., 2023)
A/duck/Sukoharjo/BBVW-1428- 2.3.2.1g" (Indriani and Dharmayanti, 2014) Yes
A/Duck/Anhui/1/2006 2.34 (Shi et al., 2023) Yes
A/Waterfowl/Korea/S57/2016 2.3.4.4 Kuruppuarachchi et al., 2022 No
A/chicken/Egypt/ME-2018/2018 2.3.4.4b (Ibrahim et al., 2021) Yes
Algreen-winged teal/Eqypt/877/2016 2344b (EFSA Panel on Animal Health and Animal Welfare (AHAW) Yes
etal., 2023)

A/whooper swan/Shanxi/4-1/2020 2.3.4.4b (Shi et al., 2023) Yes
A/turkey/Indiana/22-003707-003/2022 2.3.4.4b DEFRA Vaccination Taskforce No
Algyrfalcon/Washington/41088-6/2014 23440 (EFSA Panel on Animal Health and Animal Welfare (AHAW) Yes

etal., 2023)
A/duck/Korea/ES2/2016 03446 (EFSA Panel on Animal Health and Animal Welfare (AHAW) Pending
etal., 2023)
A/chicken/Guizhou/4/2013 2.3.4.49g (Shi et al., 2023) No
A/duck/Guizhou/S4184/2017 2.3.4.4h (Shi et al., 2023) Yes
A/duck/Fujian/S1424/2020 2.3.4.4h (Shi et al., 2023) Pending
rgES3/2.3.4.4h 2.3.4.4h (Kang et al., 2022) No
A/duck/Guanzou/S4184/2017 2.3.4.4h (Shi et al., 2023) Pending
A/Duck/VietNam/QB7412 unknown (EFSA Panel on Animal Health and Animal Welfare (AHAW) No
etal., 2023)
A/Chicken/Shanxi/2/2006 7.2 (Shi et al., 2023) No
A/Chicken/Liaoning/S4092/2011 7.2 (Shi et al., 2023) No

4 https://www.gov.uk/government/publications/vaccination-of-poultry-against-highly-pathogenic-avian-influenza/vaccination-of-poultry-against-highly-
pathogenic-avian-influenza-hpai-joint-industry-and-cross-government-vaccination-taskforce


https://www.gov.uk/government/publications/vaccination-of-poultry-against-highly-pathogenic-avian-influenza/vaccination-of-poultry-against-highly-pathogenic-avian-influenza-hpai-joint-industry-and-cross-government-vaccination-taskforce
https://www.gov.uk/government/publications/vaccination-of-poultry-against-highly-pathogenic-avian-influenza/vaccination-of-poultry-against-highly-pathogenic-avian-influenza-hpai-joint-industry-and-cross-government-vaccination-taskforce
https://www.gov.uk/government/publications/vaccination-of-poultry-against-highly-pathogenic-avian-influenza/vaccination-of-poultry-against-highly-pathogenic-avian-influenza-hpai-joint-industry-and-cross-government-vaccination-taskforce

3.2. Panel of Chicken Antisera

The AIM post infection chicken antisera panel has been expanded to include three representatives from previously untested

clades and two additional 2.3.4.4b viruses that more accurately reflect the current H5 diversity (Table 2).

Table 2. Viruses used in OFFLU AIM to generate post-infection chicken antisera, including those in the original core panel and those selected
for the expanded panel. A double-dagger () indicates an antigen used as a surrogate for a vaccine strain. Clade information is provided.

Strain Subtype Clade Relevant vaccine seed strain
ANVietnam/1194/2004/1% H5N1 1 A/chicken/Vietnam/C58/04
Avturkey/turkey/2005* H5N1 2.2 A/swan/Hungary/4999/2006
A/duck/Egypt/MS2583D/201 ot H5N1 2211 A/Chicken/Egypt/Q1995D/2010
A/chicken/Nepal/T360/201 4t H5N1 2.3.2.1a A/duck/Guangdong/S1322/2010
A/Hubei/1/2010% H5N1 2.3.2.1a A/Hubei/1/2010
A/duck/Bangladesh/17D1012/2018 H5N1 2.3.2.1a
A/mynah/Indonesia(AustriaQ)/1 3064792-010/2013% H5N1 “2.3.2.1¢” like A/duck/Sukoharjo/BBVW-1428- 9/2012
A/Anhui/1/2005* (RG) HN51 234 A/Duck/Anhui/1/2006
A/Guizhou/1/2013 H5N1 2.3.4.2
A/chicken/Czech Republic/1175-1-20VIR465-1/2020 H5N8 2.3.4.4b
A/chicken/Bulgaria/722-1-22VIR778-1/2021 H5N1 2.3.4.4b
A/duck/Cambodia/f4k241D3/2021+ H5N8 2.3.4.4b A/whooper swan/Shanxi/4—1/2020
A/great skua/Scotland/B07779/2021 H5N1 2.3.4.4b
A/mallard/Georgia/DT09382/201 7+ H5N8 2.3.4.4b A/chicken/ME-2018
A/mute swan/Croatia/102/2016* H5N5 2.3.4.4b A/green-winged teal/Egypt/877/2016
A/chicken/Nigeria/VRD-21-338/21VIR7423-29/2021 H5N1 2.3.4.4b
A/chicken/Nigeria/VRD-011_23VIR8254-67/2023 H5N1 2.3.4.4b
A/gyrfalcon/Washington/41088-6/201 4t H5N8 2.3.4.4¢c A/Gyrfalcon/WA/41088-6/2014
A/Guangdong/18SF020/2018 H5N6 2.3.4.4h




3.3. Phylogenetic Relationships
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Figure 2. Maximum likelihood phylogenetic trees of the HA1 of H5 Gs/Gd lineage viruses included in this project and vaccine seed strains
where sequences were available. Tips are coloured by test antigens, vaccine seed strains, antisera used in this study. Major clades are
annotated along the branches according to nomenclature.
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Figure 3. Maximum likelihood phylogenetic trees of the HA1 of H5 Gs/Gd lineage clade 2.3.4.4b viruses included in this project and vaccine

seed strains where sequences were available. Tips are coloured by test antigens, vaccine seed strains, antisera used in this study.
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Figure 4. Maximum likelihood phylogenetic trees of the HA1 of H5 Gs/Gd lineage clade 2.3.2.1(a/e) viruses included in this project and
vaccine seed strains where sequences were available. Tips are coloured by test antigens, vaccine seed strains, antisera used in this study.
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4. Main Findings

During this testing period, APHA, [ZSVe, and ACDP have applied the panel using haemagglutinin inhibition (HI) assays against
a further 88 test antigens representing a diversity of H5 HA. At APHA, 55 isolates were tested, with a focus on current diversity
within clade 2.3.4.4b (44 isolates). These included viruses from Europe (12), North America (21), and South Asia or associated
regions (8). Additionally, three viruses were from Antarctica (including the Antarctic Peninsula and sub-Antarctic islands). While
not directly relevant for poultry vaccination, these Antarctic isolates provide valuable surrogate antigens for Central and South
America, as they capture many antigenic and genetic features shared with viruses circulating more widely in the region (Banyard
etal., 2024; Kuiken et al., 2025), making them important for vaccine development considerations. In addition, four clade 2.3.2.1a
viruses from Asia spanning 2022-2025 and five clade 2.3.2.1a viruses from South Asia or associated regions (2023-2024)
were also tested, along with two 2016 viruses in clade 2.3.4.4e from East Asia. At IZSVe, an additional 25 isolates were tested,
focusing on contemporary H5 clade 2.3.4.4b strains, the majority of which were collected from 2024 onwards. These included
viruses from Europe (15), North America (5), and Africa (5). At ACDP an additional eight isolates were tested with a focus on

contemporary strains from Southeast Asia, including clades 2.3.4.4b, 2.3.2.1g, and 2.3.4.4e collected since 2020.

4.1. Antigenic Distances

The following text describes the distance in antigenic units of tested antigens and sera (see Table 3 for 2024-2025 virus
results). Antigenic units (AUs) are a standardised measure of antigenic distance in antigenic cartography, calculated as the logz
difference in haemagglutination inhibition (HI) titres between two viruses (i.e., a difference of 1 AU corresponds to a two-fold
difference in HI titre, 2 AUs to a four-fold difference, 3 AUs to an eight-fold difference). Although no single threshold can
definitively predict vaccine protection, and thresholds may vary between hosts, virus subtypes and vaccine technology relative
cut-offs are often used to guide interpretation. In evaluations of traditionally inactivated whole virus adjuvanted poultry AlV
vaccines, antigenic differences of around 4 AU have typically been used pragmatically to exclude strains as vaccine candidates
due to markedly reduced immunological cross-reactivity®. Such values should be regarded as guiding benchmarks rather than

absolute predictors of vaccine efficacy, and interpreted alongside epidemiological, virological, and field data (EFSA 2023).

Conclusions around antigenic diversity observed are detailed for each of the clades below:

Clade 2.3.4.4b

e HB5N1 clade 2.3.4.4b viruses from 2025 from Europe (n=10) and North America (n=3) were between 1.1 and 4.5
antigenic units (AU) from antisera raised against clade 2.3.4.4b surrogate vaccine seed strains. These viruses were
also 1.0-2.5 AU from clade 2.3.4.4c, 5.1-6.3 AU from clade 2.3.4.4h, 3.1-5.4 AU from clade 2.3.2.1x, and 3.3-5.8
AU from antisera raised against ancestral clades 1, 2.2.1, 2.2.1.2, and 2.3.4 vaccine seed strains.

o HB5N1 clade 2.3.4.4b viruses from 2024, originating from Africa (n=5), Europe (n=13), North America (n=8), South Asia
(n=1), and the sub-Antarctic (n=3), showed antigenic distances of 1.2-5.0 AU to clade 2.3.4.4b antisera, 0.9-3.5 AU
to clade 2.3.4.4c, >3.9 AU to clade 2.3.4.4h, and 2.3-6.1 AU to surrogate vaccine seed strain antisera from clades 1,
2.2.1,2.21.2,2.3.4,and 2.3.2.1x.

o HB5NS clade 2.3.4.4b viruses from 2025 from Europe (n=2) were between 2.1 and 4.5 AU from antisera raised against
clade 2.3.4.4b surrogate vaccine seed strains. These viruses were also 1.9-2.1 AU from clade 2.3.4.4c, 4.8-6.2 AU
from clade 2.3.4.4h, and 5.0-6.5 AU from antisera raised against clades 1, 2.2.1, 2.2.1.2, 2.3.4, and 2.3.2.1x vaccine

seed strains.

5 https://edepot.wur.nl/649465
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e HB5NS clade 2.3.4.4b viruses from 2024 from Europe (n=1) and North America (n=2) were 2.0-4.5 AU from clade
2.3.4.4b, 1.6-2.6 AU from clade 2.3.4.4c, 4.5-6.7 AU from clade 2.3.4.4h, and 4.4-7.3 AU from clades 1, 2.2.1,
2.2.1.2,2.3.4, and 2.3.2.1x surrogate vaccine seed strain antisera.

e H5N2 clade 2.3.4.4b viruses from 2024 from North America (n=2) were between 2.2 and 4.3 AU from antisera raised
against clade 2.3.4.4b putative vaccine strains, between 1.7 and 2.3 AU from antisera raised against clade 2.3.4.4c

and between 4.4 and 6.3 AU from antisera raised against clade 2.3.4.4h putative vaccine strains.

Clade 2.3.2.1a
e A H5NI1 clade 2.3.2.1a virus tested from South Asia from 2024 was = 3.4 AU from chicken antisera raised against
clade 2.3.4.4 strains, 2.3 - 4.9 AU from clades 1, 2.2.1, 2.2.1.2, 2.3.4, and 2.3.2.1x surrogate vaccine seed strain
antisera.
e This follows the trend from viruses tested from 2021 onwards to increasing antigenic distances over time against
clade 2.3.2.1 sera.
e Other clade viruses were tested, however strains were prior to 2024 and so they are not included in these resullts.

For more information on the antigenic properties of these viruses please contact OFFLU (secretariat@offlu.org).
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Table 3. Antigenic distances derived from antigenic maps, limited to antigens from viruses collected between 2024 and 2025. One antigenic
unit is equal to a two-fold decrease in HA titer. Distances were coloured using a heat map. Names of the closest vaccine antigen are labelled
in red italics next to their surrogate chicken antisera. Antigens are ordered by clade, subtype and region.
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Clade 1 221 2212 234 23.2.1a 23.2.1a 23.2.1g 2.3.4.4b 2.3.4.4b 2.3.4.4b 2.3.4.4c 2.3.4.4h
Subtype H5N1 H5N1 H5N1 H5N1 H5N1 H5N1 H5N1 H5N8 H5N5 H5N8 H5N8 H5N6
Subtype Year Clade Region
N1 2024 2.3.2.1a South Asia 4.2 3:5 4.0 4.9 4.2 2.3 3.5 3.8 55 4.6 3.4 5.0
N1 2024 2.3.4.4b Africa 35 3.3 3.2 4.1 4.2 28 3.4 72Xl 3.9 3.0 1.7 4.8
N1 2024 2.3.4.4b Africa 4.9 4.7 4.9 5.4 59 4.2 5.1 25 4.8 3.1 21 4.1
N1 2024 2.3.4.4b Africa 4.5 4.4 4.5 4.9 57/ 4.1 4.9 21 4.4 28 1.7 3.9
N1 2024 2.3.4.4b Africa 4.5 4.4 4.6 5.0 5.6 4.0 4.8 24 4.7 3.1 2.0 3.9
N1 2024 2.3.4.4b Africa 4.7 4.4 4.5 5.2 5.4 3.8 4.6 2.4 4.5 3.0 2.0 4.7
N1 2024 2.3.4.4b Europe 4.6 4.4 4.2 5.2 5.1 3.7 4.3 252} 4.1 29 1.9 5.4
N1 2024 2.3.4.4b Europe 4.2 39 3.9 4.8 4.7 3.2 3.9 2.3 4.2 3.1 2.0 5.2
N1 2024 2.3.4.4b Europe 4.8 4.5 4.7 5.4 55 3.8 4.7 2.8 4.9 3.4 24 4.7
N1 2024 2.3.4.4b Europe 4.3 4.1 4.0 4.9 4.9 3.4 4.1 721l 4.1 29 1.8 55
N1 2024 2.3.4.4b Europe 4.3 4.1 3.9 4.8 5.0 3.6 4.2 19 3.9 2.7 1.6 5.2
N1 2024 2.3.4.4b Europe 4.1 4.0 3.8 4.6 4.8 3.5 4.1 1.8 3.7 2.6 14 5.1
N1 2024 2.3.4.4b Europe 4.2 4.0 3.9 4.8 4.8 3.4 4.1 251} 4.0 2.8 1.7 5.1
N1 2024 2.3.4.4b Europe 3.7 3.5 34 4.2 4.5 3.1 3.7 1.9 3.8 27/ 1.5 4.8
N1 2024 2.3.4.4b Europe 4.6 4.3 4.4 5.2 5.1 3.5 4.4 27 4.7 3.4 23 5.0
N1 2024 2.3.4.4b Europe 3.7 3.5 3.3 4.3 4.3 3.0 35 2518 3.7 29 1.7 52
N1 2024 2.3.4.4b Europe 4.3 4.1 4.0 4.8 5.0 3.5 4.2 2.0 4.0 77/ 1.6 il
N1 2024 2.3.4.4b Europe 4.5 4.3 4.4 il 54 3.8 4.6 2.2 4.4 29 1.8 4.5
N1 2024 2.3.4.4b Europe 4.4 4.1 4.2 4.9 il 3.6 4.3 2.3 4.4 3.0 1.9 4.6
N1 2024 2.3.4.4b North America 4.1 4.1 3.6 4.5 4.8 3.8 4.1 1.3 29 21 1.2 &7/
N1 2024 2.3.4.4b North America 5:5 5.3 4.9 6.1 5.6 4.4 4.9 29 4.2 34 2.8 6.8
N1 2024 2.3.4.4b North America 5.0 4.8 4.4 5.5 5.4 4.2 4.7 251) 3.8 2.6 1.9 6.0
N1 2024 2.3.4.4b North America 4.4 4.3 39 4.9 5.0 3.8 4.3 1.6 33 23 14 5.7
N1 2024 2.3.4.4b North America 29 27/ 26 3.5 3.6 23 28 24 3.7 3.2 2.0 &l
N1 2024 2.3.4.4b North America 4.6 4.6 4.0 5.2 5.0 3.9 4.3 21 34 27 2.0 6.2
N1 2024 2.3.4.4b North America 4.6 4.3 4.3 5.2 5.0 3.5 4.3 2.6 4.4 3.3 2.3 5.4
N1 2024 2.3.4.4b North America 4.6 4.5 4.2 5.1 5.2 3.9 4.5 1.9 3.7 2.5 1.6 5.5
N1 2024 2.3.4.4b South Asia 4.8 4.7 4.4 5.4 5.3 4.0 4.6 2.1 4.0 2.8 1.9 5.7
N1 2024 2.3.4.4b Subantarctic 4.2 4.3 3.9 4.7 5.2 3.9 4.4 1.2 38 2.0 0.9 5.2
N1 2024 2.3.4.4b Subantarctic 5.0 4.5 4.3 57/ 4.5 3.2 3.9 3.8 5.0 4.5 3.5 6.6
N1 2024 2.3.4.4b Subantarctic 3.3 3.3 27/ 3.8 4.0 3.1 3.3 1.8 2.9 2.6 1.6 57
N2 2024 2.3.4.4b North America 4.2 4.0 4.1 4.7 5.1 3.5 4.3 22 4.3 29 1.7 4.4
N2 2024 2.3.4.4b North America 5.8 57/ 5.3 6.3 6.3 5.0 5.6 2.4 4.1 2.7 2.3 6.3
N5 2024 2.3.4.4b Europe 6.5 66 6.1 69 | 73 61 66 2.5 41 24 26 6.7
NS 2024 2.3.4.4b North America 4.8 4.7 4.7 5.3 5.9 4.4 5.1 2.0 4.3 215 1.6 4.5
NS 2024 2.3.4.4b North America 5.4 5.3 5.2 5.8 6.4 4.8 5.6 2.2 4.5 2.6 1.9 4.8
N1 2025 2.3.4.4b Europe 4.6 4.7 4.1 5.1 513 4.2 4.6 iES) 3.0 2.0 14 6.0
N1 2025 2.3.4.4b Europe 4.5 4.3 3.9 5.0 4.8 3.7 4.1 2.0 3:5 2.7 1.9 6.0
N1 2025 2.3.4.4b Europe 4.2 4.3 3.7 4.6 5.0 4.0 4.3 il 29 19 1.0 5.7
N1 2025 2.3.4.4b Europe 4.9 4.7 4.4 54 5:3 4.0 4.5 22 4.0 2.8 2.0 59
N1 2025 2.3.4.4b Europe 4.9 4.7 4.4 5I5) (572 3.9 4.5 24 4.1 3.0 222} 5.8
N1 2025 2.3.4.4b Europe 4.1 3.9 34 4.7 4.1 3.1 3.5 25 3.7 3.2 2.3 6.2
N1 2025 2.3.4.4b Europe 4.0 3.9 3.5 4.6 4.4 3.2 3.7 21 3.5 29 1.9 5.9
N1 2025 2.3.4.4b Europe 4.0 4.0 3.3 4.5 4.4 3.5 3.7 2.0 3.0 257 1.9 6.3
N1 2025 2.3.4.4b Europe 4.4 4.2 4.1 4.9 5.1 3.6 4.3 2.0 4.0 2.7 il7/ Sl
N1 2025 2.3.4.4b Europe 4.1 4.0 3.8 4.7 4.8 3.4 4.0 2.0 3.9 2574 1.6 Sl
N1 2025 2.3.4.4b North America 5.2 4.9 4.7 5.8 55 4.1 4.7 227/ 4.5 3.3 2.5 59
N1 2025 2.3.4.4b North America 4.9 4.8 4.4 5.4 5.4 4.2 4.7 2.0 3.8 26 1.8 5.8
N1 2025 2.3.4.4b North America 4.8 4.5 4.2 5.4 4.9 3.6 4.2 2.7 4.2 3.4 255 6.1
NS 2025 2.3.4.4b Europe 5.8 5.8 54 6.3 6.5 5.3 5.8 21 3.9 23 21 6.2
N5 2025 2.3.4.4b Europe Do) 5.4 5.4 5.9 6.5 5.0 5.7 2.2 4.5 2.5 1.9 4.8
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4.2 Antigenic Cartography

Antigenic cartography was undertaken to further quantify and visualise the antigenic distances between virus’s representative
of vaccine seed strains and contemporary circulating viruses as described in the AIM pilot project. Maps were analysed and
visualised using R Studio version 2023.03.1+446 and the package ‘Racmacs’® v1.2.9 built under R v4.3.1 as described by
(Smith et al., 2004) and previously used in (Lewis et al., 2021). For information regarding map generation and interpretation
please contact OFFLU experts via the secretariat email (secretariat@offlu.org). Amino acid changes in the HA1 were visualised
by reconstructing ancestry using ‘TreeTime’ v0.11.1 (Sagulenko, Puller and Neher, 2018) and were compared between within-
clade and within-subtype test antigens. Antigenic maps were coloured according to unpublished viral clade nomenclature and

subtype using the H5Nx dataset in Nextclade (Ort et al., 2025).

These results described here and above (section 4.1) suggest that of the vaccine seed strains and surrogates tested, we would
expect the currently used H5N8 clade 2.3.4.4 antigens to remain suitable candidates for inactivated whole-virus adjuvanted
vaccines for most contemporary clade 2.3.4.4b viruses. Antigens which exhibit higher antigenic distance from the sera should
be prioritised for testing in vaccine efficacy challenge studies and work is required to determine for each vaccine technology
the cut-off antigenic distance associated with loss of protection. Furthermore, subtype-specific heterogeneity was observed,
consistent with previous reports and this should be considered further. In contrast, vaccine antigens from outside clade 2.3.4.4
- including contemporary 2.3.2.1a viruses and earlier ancestral clades such as 1, 2.2.1, and 2.3.4 - showed limited cross-
reactivity and are unlikely to provide effective protection against currently circulating 2.3.4.4b viruses. Notably, HSN1 viruses
from clade 2.3.2.1a, particularly those detected in South Asia in 2024, exhibited reduced reactivity to antisera from both clades
2.3.4.4 and 2.3.2.1, continuing a trend of increasing antigenic divergence observed since 2020. These results underscore the
value of analysing virus relationships at a regional level, particularly in South and South-East Asia, where vaccine requirements

may need to address both clade 2.3.4.4b viruses and other circulating clades such as 2.3.2.1a, 2.3.2.1¢, and 2.3.2.1g.

® https://github.com/acorg/Racmacs/

16



B 2321aN1
|:| 2.3.2.1e-N1
D 2.3.2.1f-N1
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Figure 8. Three-dimensional antigenic map illustrating the relationships among Gs/Gd-lineage avian influenza viruses characterized in this
study. Each sphere represents a virus (antigen), coloured by subtype and clade; squares represent post-vaccination chicken antisera. Clade
labels are placed on representative vaccine seed strains. Panel A: Overview of the full antigenic map, without highlights. Panel B: Antigens
characterized from 2024 and 2025 are highlighted, including multiple clade 2.3.4.4b viruses and one clade 2.3.2.1a virus.
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5. Conclusions and Future Directions

In summary, the OFFLU AIM project continues to provide a critical foundation for the global monitoring of antigenic evolution in
circulating H5 viruses. Results from this reporting period highlight the increasing divergence of HS viruses over time, the rapid
evolutionary dynamics that underscore the need for ongoing reassessment, and the importance of examining relationships
within a clade to assess potential regional implications of antigenic drift. We believe this data is vital for the international
community and especially those concerned with decision making over whether to vaccinate and what vaccine to use. This
programme provides trusted impartial science-based evidence that we hope will shape and inform all those concerned with

either maintaining or newly implementing vaccination programmes.

Continued Surveillance and Test Virus Selection

We will continue to monitor and characterise newly emerging H5Nx viruses from the Gs/GD lineage, with a focus on expanding
representation of underrepresented clades in the test virus panel, particularly 2.3.2.1a, 2.3.2.1¢c, 2.3.2.1g, 2.3.2.1¢, and
2.3.4.4h, to better capture the diversity of circulating viruses. Outputs will be delivered through the annual technical report,
executive report, and a webinar in late 2025 or early 2026 for interested stakeholders. Gaps in test virus representation will be
addressed through both classical and reverse genetics approaches. Classical approaches will include the ongoing acquisition
and sharing of live virus isolates and associated reagents with global partners. For viruses where isolation is unsuccessful or
not routinely performed, reverse genetics (RG) will be applied. This process will be conducted transparently, with sequence
database contributors systematically contacted to request permission for sequence use, ensuring they are acknowledged and

kept informed.

Expansion and Refinement of the Reference Antisera Panel

Concurrently, the OFFLU reference antisera panel will be expanded and refined to remain globally representative and relevant.
Antisera production targeting clades 2.3.4.4h and 2.3.2.1a/c/g is underway, alongside production for additional putative
vaccine seed strains not yet represented in the AIM panel (see Table 2). Priority will be given to a clade 2.3.4.4b H5N1 sub-
Antarctic isolate identified as an antigenic outlier, which is genetically related to viruses detected in Chile, Uruguay, Brazil, and
several sub-Antarctic island populations. Harmonisation and ring testing across participating laboratories will remain central to

ensuring consistent production and application of reference antisera.

Broadening the Scope of the AIM Framework

To meet evolving needs, the AIM project will expand both in scope and functionality. Planned developments include evaluating
novel vaccine concepts such as computationally optimised broadly reactive antigens (COBRA) (Giles and Ross, 2011) to
determine their capacity to induce antibody responses against contemporary circulating strains; extending the AIM framework
to additional virus subtypes, beginning with H9, using comparable methodologies to assess global antigenic diversity and guide
vaccine strain selection; and enhancing reporting and communication through the introduction of a meeting-report format for
regular outputs. Laboratories and interested parties will be invited to contribute data to support reviews of antigenic diversity,
particularly of surface proteins, and to assess implications for vaccine performance. Epidemiological developments that may
necessitate vaccine updates (e.g., the emergence of a novel virus in a region with existing vaccine use) will also be identified.
These outputs will complement technical reports and aim to strengthen transparency and information sharing across the

network.

Network Growth and Capacity Building
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Expanding the AIM network remains a priority, with a focus on engaging additional global reference laboratories, particularly in
regions of strategic importance. Targeted capacity-building efforts will be undertaken to support laboratory participation and
enable broader evaluation of antigenic diversity using harmonised protocols. Simultaneously, we will focus on addressing the
technical challenges of assimilating data from multiple sources into a single cartographic read-out, even when common

standards are applied.

Links to Key AIM Documents

Concept Note
Module 1: OFFLU AIM report background updated 2024

Module 2: OFFLU AIM Annex 1- sub-national and national level guidance for countries on assessing the antigenic characteristics
OFFLU AIM Webinar (English)

OFFLU AIM Webinar (Spanish)

OFFLU AIM Webinar Summary and FAQs

OFFLU AIM Pilot Report (October 2023)

OFFLU AIM Technical Report (July 2024)

OFFLU AIM Executive Summary (October 2024)
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