Skip to content
World Egg Organisation
  • Become a Member
  • Login
  • Home
  • Who We Are
    • Vision, Mission & Values
    • Our History
    • WEO Leadership
    • WEO Family Tree 
    • Member Directory 
    • WEO Support Group
  • Our Work
    • HPAI Support Hub
    • Vision 365
    • World Egg Day
    • Young Egg Leaders
    • WEO Awards
    • Industry Representation
    • Egg Nutrition
    • Egg Sustainability
  • Our Events
    • WEO Global Leadership Conference Cartagena 2025
    • Future WEO Events
    • Previous WEO Events
    • Other Industry Events
  • Resources
    • News Updates
    • Presentations 
    • Country Insights 
    • Cracking Egg Nutrition
    • Downloadable Resources
    • Chick Placements 
    • Interactive Statistics 
    • Publications 
    • Scientific Library 
    • Industry Guidelines, Positions, and Responses 
  • Contact
  • Become a Member
  • Login
Home > Resources > Scientific Library > Egg Processing > Dev, 2008 – Dielectric properties of egg components and microwave heating for in-shell pasteurization of eggs
  • Resources
  • News Updates
  • Presentations 
  • Country Insights 
  • Interactive Statistics 
  • Chick Placements 
  • Downloadable Resources
  • Cracking Egg Nutrition
  • WEO Publications 
  • Scientific Library 
  • Industry Guidelines, Positions, and Responses 

Dev, 2008 – Dielectric properties of egg components and microwave heating for in-shell pasteurization of eggs

In this study, microwave heating has been considered for in-shell egg pasteurization. In the first part, the effects of temperature (0–62°C) and frequency (200 MHz to 10 GHz) on the dielectric properties of egg components were investigated. In the second part, individual egg components as well as intact in-shell eggs were brought to pasteurization temperature in a laboratory-scale microwave oven working at 2450 MHz using different (0.75, 1 and 2W g-1) power densities and the heating curve was analyzed to determine heating time required for different power levels. Under the conditions studied, it was demonstrated that the albumen had higher dielectric properties and loss factors leading to its faster heating rate in a microwave environment than the yolk. This was corroborated by the microwave heating trials performed on individual components where albumen always heated up faster. Laboratory trials on microwave heating of in-shell eggs indicated that, on the contrary, the heating rates of both albumen and yolk were similar. Microwave heating appeared to have great potential for in-shell egg pasteurization. Models for calculating the ε’ and ε” at a given frequency and temperature for shell egg components were also presented.

Download Now

Stay Updated

Want to gain the latest news from the WEO and updates on our events? Sign up to the WEO Newsletter.

    • Terms and Conditions
    • Privacy Policy
    • Disclaimer
    • Become a Member
    • Contact
    • Careers

UK Administration Office

P: +44 (0) 1694 723 004

E: info@worldeggorganisation.com

  • Linkedin
  • Instagram
  • Facebook
  • X
  • YouTube
Site by web and creative agencyeighteen73

Search

Select A Language