Skip to content
World Egg Organisation
  • Become a Member
  • Login
  • Home
  • Who We Are
    • Vision, Mission & Values
    • Our History
    • WEO Leadership
    • WEO Family Tree 
    • Member Directory 
    • WEO Support Group
  • Our Work
    • HPAI Support Hub
    • Vision 365
    • World Egg Day
    • Young Egg Leaders
    • WEO Awards
    • Industry Representation
    • Egg Nutrition
    • Egg Sustainability
  • Our Events
    • WEO Global Leadership Conference Cartagena 2025
    • Future WEO Events
    • Previous WEO Events
    • Other Industry Events
  • Resources
    • News Updates
    • Presentations 
    • Country Insights 
    • Cracking Egg Nutrition
    • Downloadable Resources
    • Chick Placements 
    • Interactive Statistics 
    • Publications 
    • Scientific Library 
    • Industry Guidelines, Positions, and Responses 
  • Contact
  • Become a Member
  • Login
Home > Resources > Scientific Library > Egg Production > Avian Health > Bones - Skeleton > Kim, 2012 – Concepts and methods for understanding bone metabolism in laying hens
  • Resources
  • News Updates
  • Presentations 
  • Country Insights 
  • Interactive Statistics 
  • Chick Placements 
  • Downloadable Resources
  • Cracking Egg Nutrition
  • WEO Publications 
  • Scientific Library 
  • Industry Guidelines, Positions, and Responses 

Kim, 2012 – Concepts and methods for understanding bone metabolism in laying hens

Laying hens have a unique bone turnover due to the daily egg laying cycle. Laying hens have three distinctive kinds of bones related to egg formation: cortical, cancellous, and medullary bones. Cortical bone is a compact structural bone, whereas cancellous bone is the three-dimensional lattice-like honeycomb architecture at the end of long bones. Medullary bone is a highly labile woven bone lying in the marrow cavities. Medullary bone acts as Ca storage for eggshell formation. Thus, bone quality is closely related with egg production and egg shell quality. During the daily egg laying cycle, medullary bone osteoclasts alternately cease and accelerate bone resorption. Although osteoclast numbersare not changed during the daily egg laying cycle, considerable morphological changes in osteoclasts occur along with changes in calcium requirements for eggshell formation. Furthermore, the selection of proper methods is critical to obtainprecise bone evaluation data, and include bone ashing, densitometric techniques, mechanical testing, or histomorphometry to evaluate bone status in laying hens. Since bone metabolism in laying hens is related to economic and animal welfare issues, better understanding of bone metabolism in laying hens would be importantto enhance productivity and improve animal welfare.

Download Now

Stay Updated

Want to gain the latest news from the WEO and updates on our events? Sign up to the WEO Newsletter.

    • Terms and Conditions
    • Privacy Policy
    • Disclaimer
    • Become a Member
    • Contact
    • Careers

UK Administration Office

P: +44 (0) 1694 723 004

E: info@worldeggorganisation.com

  • Linkedin
  • Instagram
  • Facebook
  • X
  • YouTube
Site by web and creative agencyeighteen73

Search

Select A Language